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Thévenin and Norton Equivalent Circuits

Suppose you were given a circuit with two resistors in series, painfully obvious with no tricks or traps. Assuming
you didn’t care about the node between them, what is the first thing you would do? You’d probably combine
them into one resistor by adding the two values together.

Have you ever stopped to think about why you did it or where the rule comes from? Sometimes we are so used
to such simple concepts that we forget our motivations for doing so or their physical meaning. When we combine
resistors in series and parallel, we do so because we don’t necessarily care about any of the nodes and branches
inside the black box containing the resistive network. We only care about the two terminals that we keep fixed.
The resistive network across these terminals is replaced with a single, equivalent resistor.
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Figure 1: A “black box” of resistors, its equivalent resistance, and their i-v characteristic

But what do we really mean by “equivalent”? Well, recall that the series and parallel rules were derived using
KCL and KVL. The heart of circuit equivalence lies in the idea of the i-v relationship, the two quantities that
we can measure from the two terminals of interest. Suppose we applied a voltage v across the original resistive
network and observed a current i coming out of the source. Then applying the same v across our one equivalent
resistor should give us the same output i. If this holds for any arbitrary v, then we say the two circuits are
equivalent. (Alternatively, we can probe the circuit with a current input and observe the voltage output.)

Okay, so now we have an idea of where we’re going. The Thévenin and Norton circuits can simply be thought
of as generalizations of the above idea. Suppose we now have an arbitrary circuit, containing not only resistors
but a variety of sources as well. Can we find an “equivalent,” simpler circuit to represent it? And our criterion
for equivalence is the same as before; the i-v relationship must not change.

That’s where Thévenin and Norton come in. Their theorems tell us that the answer is yes, as long as the circuit
of interest is linear. Any circuit of this type can be redrawn either as a voltage source in series with a resistor,
or a current source in parallel with the same resistor. Unlike with just resistors, we now need two elements to
completely model the original circuit. (Caveat: The polarities of the sources do matter. IN always points in the
direction of increasing VTh.)
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Figure 2: The Thévenin and Norton equivalent circuits
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As the circuits are drawn this way, it turns out that finding the values of these circuits is relatively simple.
Notice that the Thévenin voltage VTh is just the open-circuit voltage voc across the terminals, while voc = INRN

for the Norton circuit. In addition, if we short the two terminals of our circuits, we get that the short-circuit
current isc across the Thévenin circuit is Vth/RTh, while for the Norton circuit IN = isc. Not only do these
relationships tell us how to find these quantities, it also tells us that the Thévenin and Norton circuits are tightly
coupled by the formulae VTh = INRTh and RTh = RN .

At this point, it is worthwhile to take a step back to think about why we opted to choose voc and isc as our
default go-to values. Recall that we desire the i-v relationship to hold for any arbitrary v and i. This includes
the cases of voc, in which i = 0, and isc, in which v = 0. What we’ve effectively done is take only two specific
instances and solve for a function that supposedly works for all instances of voltage (or current) inputs. How
could we have done this?

Remember the little specification that the circuits we’re looking at must be linear? This is where it comes in!
Because the circuits are linear in one input, the equivalent circuit (or the mathematical function describing it) is
completely defined with only two instances. Consider actually attaching an arbitrary voltage v to the Thévenin
and Norton circuits as shown.
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Figure 3: The i-v characteristic of the equivalent circuits

We can find an analytical expression relating i and v for both circuits, in terms of the Thévenin and Norton
quantities. For the Thévenin, Ohm’s law gives us

i =
v − VTh

RTh
=

v

RTh
− IN (1)

For the Norton case, we can apply KCL on the top node, coupled with Ohm’s law across RN :

i =
v

RN
− IN =

v

RTh
− IN (2)

As expected, both circuits give us the same relationship. Moreover, they are clearly linear in i and v. The
quantities that we normally find, VTh = voc and IN = isc, lie on the axes, while the inverse of RTh forms the
slope. Together with the circuits themselves, these i-v plots are equivalently powerful ways of representing the
circuit. Indeed, in this form it is very easy to see that the whole concept is just a generalization of equivalent
resistances in Figure 1. In the resistance case, it was just that VTh = IN = 0.

These relationships also give us an alternative definition of RTh. Using our equations, we can see that RTh = v
i

when VTh = IN = 0. This stipulation means that all independent sources are zeroed out in the original circuit.
Again, since all of these equations must hold for any arbitrary v and i, this gives us a way to find RTh directly:

1. Zero out all independent sources in the circuit.

2. Attach some arbitrary vtest (or itest) to the terminals of interest with the polarity shown in Figure 3
above. This may be left symbolic, or it may be any numeric value.

3. Find the response itest (or vtest).

4. The Thévenin resistance RTh is equal to the ratio vtest
itest

.

In the absence of any dependent sources, the resulting circuit after step 1 will contain only resistors. Thus, steps
2-4 in this case can be reduced to simply finding Req between the two terminals, since this is the very definition
of Req that we had established at the beginning of this discussion!
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